Lessons Learned in Modeling Dynamic Systems
using Genetic Programming

Juan J. Flores and Mario Graff

Divisién de Estudios de Posgrado
Facultad de Ingenieria Eléctrica
Universidad Michoacana
Mexico

Abstract. This article describes a set of experiences in modeling dy-
namic systems using Genetic Programming and Gene Expression Pro-
gramming. We have made experiments in linear systems, non-linear sys-
tems and times series. The experiments in linear systems include linear
pendulum, coupled mass-spring, electrical circuits, etc. In non-linear sys-
tems we have modeled the Van der Pol Equation, non-linear pendulum
with friction, etc. The models have been represented as an ordinary dif-
ferential equation, system of ordinary differential equations, and using a
time series approach.

1 Introduction

Modeling a dynamic system is a process that generally has been made by an
engineer. This work describes the ability of Genetic Programming (GP) [6] and
Gene Expression Programming (GEP) [2] to model a dynamic system.

It is presented a set of examples where GP and GEP have found good models.
Examples included in this work are: a mass spring shock absorber, a coupled
mass-spring system, the Van der Pol Equation, a non-linear pendulum with
friction, and a wind time series.

This article shows three different ways of representing a model in GP and
GEP. It is used an ordinary differential equation, a system of ordinary differential
equations and a time series approach.

Section 2 is an introduction to system identification. Section 3 shows the
representation of a dynamic system in GP. Section 4 is the experiments scenar-
ios. Section 5 presents examples in of linear systems. Section 6 shows examples
of non-linear systems. Section 7 presents an example of time series. Section 8
presents a summary of the obtained results. Section 9 presents the conclusions.

2 System Identification

System identification (SID) is the process of deriving a mathematical model
from the internal dynamics of a system of observations of its outputs. Modeling
is the essential first step in a variety of engineering problems. For example, if an

© A. Gelbukh, C.A. Reyes-Garcia. (Eds.) Received 14/07/06
Advances in Artificial Intelligence. Accepted 03/10/06
-Research in Computing Science 26, 2006, pp.177-186 Final version 13/10/06

178 Flores J. and Graff M.

engineer is going to control a dec-motor, first he needs to model it. The model is
made by applying a given input to the system and observing its behavior. From
this behavior, a mathematical model is built and tested against the dc-motor.
Based on the obtained mathematical model, the controller is made.

Linear system identification methods have been widely studied (see [7]). How-
ever, these methods involve a complicated process that usually can only be fol-
lowed by an expert. Nonlinear system identification remains a difficult task,
because frequently there is not enough information about the system (i.e. the
structure system’s is unknown).

3 Representation of Dynamic Systems

In order to make the experiments, a computer program called ECSID (Evo-
lutionary Computation based System Identification) was implemented. ECSID
uses GP or GEP to build a mathematical model from observed data. ECSID
has three different ways to represent a model; it can represent the model as an
ODE (Ordinary Differential Equation), a System of ODEs, or using a time series
approach.

All the models represented as ODE have the general form of Equation 1.

™ = f(t,x, 2 2", .. D) (1)

ECSID evolves only the right part of Equation 1. The order of the system
is determined by the order of the highest order element whose coefficient is not
zero. Figure 1 shows an ODE represented in ECSID. The ode represented in the
Figure is % = 7% + 102 4+ 12. We can observe that this system is a second
order system, because it has a first order element.

Fig. 1. ODE represented in ECSID.

In order to get the behavior of the system, Equation 1 is integrated. First
this equation is transformed to Equation 2 and a 4th order Runge-Kutta method
is used to integrate the latter.

Lessons Learned in Modeling Dynamic Systems using Genetic Programming 179

yi =92
yé =Y3

(2)

Yn :f(t7917927"'7yn)

Equation 2 is formed by replacing the following variables y1 = 4,y = ¥/, y3 =

y”a oy Yn = y(nil)'

ECSID can evolve a system of ODEs. It uses a multi-gene chromosome to
represent the system, where each gene has the same structure of the right part
of Equation 1. An operation similar to crossover was implemented; it is called
gene-recombination. Gene-recombination receives two individuals and randomly
chooses one gene from each individual and swaps them.

ECSID can also represent its models using a time series approach, where the
output is modeled as a function of past values of the input(s) and output(s).
Equation 3 shows this approach where k is the current time and 7 is the maxi-
mum time shift.

Yo = F(Y1 k=15 s Yl k=1 Yn k=15 - - - > Ynh—r) (3)

Another characteristic of ECSID is that it can evolve linear systems. In order
to evolve linear systems we need to disable product and division. Product and
division can receive any s-expression and multiply or divide these s-expressions.
For example, product can give an individual whose form is flif = 22 which is
non-linear. An operation called “coefficient” is implemented to replace product.
Coeflicient receives any s-expression and a constant, and multiplies the constant
with the s-expression. It was also implemented a function that punishes individ-
uals that are non-linear. One way of punishing a non-linear individual is to set
its fitness to its original fitness plus the average fitness of the population.

4 Experiments Scenarios

In order to compare experiments from different domains, we use the correlation
coefficient (Equation 4). The correlation coefficient gives a number between —1
and 1 where 1 means that the curves are equal.

- nyoy— 33y (4)
Vinda? = (Ca)n i y? - ()]

ECSID uses the standard evolutionary computation procedure, random ini-
tial population, fitness proportional selection and elitism. The fitness function is
the absolute difference of the errors Ye|. Each experiment had a population of
500 individuals and was run for 500 generations The termination criteria is met
when the correlation coefficient is > 0.99. All models presented here are selected
from the best individuals of 20 independent runs. Table 1 shows the parameters
used in ECSID .

180 Flores J. and Graff M.

Genetic Operator Probability
Mutation 0.2
Crossover 0.8
is-transposition 0.1
ris-transposition 0.1
gene-transposition 0.1
one-point recombination 0.3
two-point recombination 0.3
GP and GEP gene-recombination 0.1

Table 1. Genetic operators’ parameters

5 Linear Systems

There are a lot of problem that are modeled as linear systems. E.g. Electrical
Circuits, Electrical Machines, Mechanical Systems, etc. If it is known that the
system is linear, it is important that ECSID finds a linear model. A system is
linear if it can be represented as Equation 5.
d"z dz
an(t)dt—n + I +ao(t)z = g(t) (5)

In order to obtain a linear model, we use two methods: the first one uses the
operation “coefficient” and disables the operations “product” and “division”; the
second one uses a function that punishes those individuals that are non-linear.
The function set used to obtain the following two examples is {+, —, *, /} and
the terminal set is {z, ‘é’;,@?} The symbol & means a random floating point
number in the range [0, 100]. In the following example a function that punishes
those individuals that are non-linear is used.

The first example is a mass spring shock absorber. Equation 6 shows its
model. Its initial conditions are z(0) = 1 and 2’(0) = 0.

...+a1(t)

d’x dz
= a (6)
GP and GEP evolved the same equation that Equation 6. Figure 2 shows the
graphics of Equation 6.
In the second example we model a coupled mass-spring system. Equation 7
shows this system. The initial conditions for the system are z(0) = 1,2'(0) =

0,y =2,y'(0) = 0.

2
(jl;f— 5T + 2y

2 (7)
d7y

— =2z — 2y

dt?

In this example GEP and GP obtained the same model. Equation 8 shows
this model. It can be observed that the obtained model is linear.

Lessons Learned in Modeling Dynamic Systems using Genetic Programming 181

f(t)

Fig. 2. Mass Spring Shock-absorber

d>x

il

dt?

- 0
@Y

Figure 3 shows the behavior exhibited by the obtained models and the real

system (there are four graphics in the figure because each model has two equa-
tions).

T T
4L Actual 1 —— |

Actual 2 - - - -

f(t)

time

Fig. 3. Mass springs coupled.

ECSID has obtained models for a linear pendulum, an electric circuit (two
branches), and a DC machine; all of models obtained exhibit a similar behavior
that the ones presented in this section. All the models that have been obtained

182 Flores J. and Graff M.

have a similar structure than the real models. Therefore this methodology builds
good models and also the models obtained can be understood by an engineer.

Hinchliffe [4] states that it is unlikely to evolve models that can provide
any insight into the underlying physical processes of a dynamic system. In all
experiments done so far we have found models that have a similar structure than
the real models. Therefore this procedure can produce not only good models but
also models that provide some insight into the underlying physical processes.

The results obtained using both methods (“coefficient” and punish function)
were comparable.

We have not found any work that can evolve linear systems.

6 Non-linear Systems

Non-linear systems are those systems that cannot be represented using Equation
5. These kind of systems are very important; e.g. mechanical systems, chemical
processes, electrical circuits, etc.

This example evolves the Van der Pol Equation, which is shown in Eq. 9.
The experiment was done with initial conditions z(0) = 1.5 and z’(0) = 0. The
function set is {+, —,*, /} and the terminal set is {9Z, z, R}

d’x dx

27 (1 =)= =

el G by (9)
Both GEP and GP obtained the same model that Equation 9. Figure 4 shows

the real model and the obtained by GEP and GP.

4 T T
GEP O
3r P+
2 Real
f(t) 1
0
-1
-2
5 10 15 20 25 30
time

Fig. 4. Van der Pol Equation

The next example is a non-linear pendulum with friction; equation 10 non-
linear pendulum shows the model. The initial conditions for the experiment
are 0(0) = 1 and 0'(0) = 0, the function set is {+, —, *, /,sin, cos,exp} and the
terminal set is {2, 0, R}.

Lessons Learned in Modeling Dynamic Systems using Genetic Programming 183

2

2—2? = 72% —19.6sin(6) (10)

Equations 11 and 12 show the result using GEP and GP, respectively. It

is observed that the models obtained are linear but it is not implemented any
restriction about non-linearity. Figure 5 shows the behavior exhibited by those

models.

d20 o _do

Ty = 20 — 22— 200 (11)
26 df
—— = —2.3048492976— — 19.34372929766 (12)
2t dt

time

Fig. 5. Pendulum with friction.

Gray et al [3], Weinbrenner [11] and Cao et al [1] use a similar procedure to
evolve non-linear systems. All of them represent the system as an ODE. Their
procedure uses GP to find the structure of the system and another one to find
the parameters of the system.

In all the experiments done we have not found evidence that it is necessary to
use a different procedure to optimize the parameters of the ODE. We have found
that GP does a good job in finding a model that behaves close to the observed
data. Furthermore all the models obtained are simple enough to be understood
by an engineer.

7 Time Series Prediction

This example models a wind time series using a slide window prediction method.
In order to compare the obtained model, we developed an ARIMA model (see

184 Flores J. and Graff M.

[8]) using the standard ARIMA procedure. This model was obtained using the
software Minitab [9]. Equation 13 shows the model obtained using the ARIMA
procedure. Where e means the prediction errors.

fn)=fn—=1)+ f(n—2)— f(n—13) —0.997e(n — 1) (13)
—0.7976e(n — 12) + 0.7956e(n — 13)
The function set is {+, —, *, /, sin, cos, log} and the terminal set is {yn—1, . .., Yn—16, N}
Equation 14 shows the best model. Figure 6 shows the time series and the
obtained model.

sin(In(f(n — 12)))

sin(f(n — 14))
8.5209
+ cos(—mm01 + f(n — 12) — 6.8962)
Wmn(f(n=3))) 5.6555
n (0.7323 f(n — 12) 4+ 4.1514) cos(2sin(f (n — 12)))

ff((::194)) - f(n—2)

+0.5986 f(n — 12)

f(n) = 0.1408 cos(+ f(n—2))

(14)

16 | I | |
GEP —6—

14 + Actual -+ -+ 7
12 '

f(t) 10

time

Fig.6. Wind Time Series

The correlation coefficient of Equation 13 is r = 0.51933 meanwhile for Equa-
tion 14 is » = 0.7313. It is clear that GP found a better model than the one
obtained by the ARIMA procedure.

Lie et al [5], and Szpiro [10] use a slide window prediction method (Equation
3) to model a time series. Hinchliffe [4] used this method to find a model of a
dynamic system.

Lessons Learned in Modeling Dynamic Systems using Genetic Programming 185

8 Results

Table 2 presents a summary of the results of the experiments. ECSID found
good models in all the the experiments represented as ODEs and slide window
regressors. In the last experiment the model found is no as good as the others
but the observed data is more complex.

Method Problem r
GEP |Mass Spring Shock-absorber (Eq. 6)| 1
GP |Mass Spring Shock-absorber (Eq. 6)| 1
GEP Coupled mass-spring (Eq. 8) 1
GP Coupled mass-spring (Eq. 8) 1
GEP Van der Pol (Eq. 9) 1
GP Van der Pol (Eq. 9) 1

GEP | Pendulum with friction (Eq. 11) |0.9982
GP Pendulum with friction (Eq. 12) {0.9969
GEP Wind Prediction (Eq. 14) 0.7313

Table 2. Results

Table 3 shows the computational resources needed to find a good model
with a probability of 0.99 (see [2] Chapter 8). This information was acquired
experimentally. Each experiment was run 20 times. (M, 1, z) is the number of
individuals that needs to be processed in order to obtain a model with a cor-
relation coefficient > 0.99. The last column is maximum number of generations
needed to set a correlation coefficient > 0.99.

Column I(M,i,z) and Gen. give us an idea of the problem complexity and
the computational resources needed by GP or GEP. It is observed that the most
complex problem is the “Pendulum with friction” for both cases and the simplest
experiment is the “Coupled mass-spring” again for both cases.

From this table we can say that GP generally needs to process less individuals
than GEP, therefore it also needs less generations. Ferreira [2] states that GEP
is better than GP. We have not found any evidence that supports her assertion.
Another characteristic that can be inferred from this table is the number of
generations needed, we can say that 100 generations are acceptable.

The wind time series model is not included in this table because there is
not information to calculate I(M, i, z), instead an ARIMA model was used to
compare the GP model.

9 Conclusions

In this work we have found experimentally that GP is better than GEP because it
processes less individuals to obtain comparable results. ECSID has found good
models and those models can provide an insight into the underlying physical
process of a dynamic system.

186 Flores J. and Graff M.

Method Problem I(M,i, z)|Gen.
GEP |Mass Spring Shock-absorber| 110,162 77
GP |Mass Spring Shock-absorber 9,000 18
GEP Coupled mass-spring 41,275 4
GP Coupled mass-spring 42,760 8
GEP Van der Pol 2,872,995 64
GP Van der Pol 197,769 37
GEP Pendulum with friction 262,011| 137
GP Pendulum with friction 48,000{ 48

Table 3. Computational effort

We provide the reader with a set of experiences that show evidence about

what results a scientist or engineer might expect from using GP for modeling
Dynamic Systems.

ECSID is a free software, written in Lisp, and can be downloaded from

http://sf.net/projects/ecsid.

References

1.

11.

H. Cao, L. Kang, Y. Chen, and J. Yu. Evolutionary modeling of systems of ordi-
nary differential equations with genetic programming. Genetic Programming and
Evolvable Machines, 1(4):309-337, Oct. 2000.

C. Ferreira. Gene expression programming: A new adaptive algorithm for solving
problems. In Complex Systems, number 2, pages 87-129, 2001.

G. J. Gray, D. J. Murray-Smith, Y. Li, and K. C. Sharman. Nonlinear model
structure identification using genetic programming. In J. R. Koza, editor, Late
Breaking Papers at the Genetic Programming 1996 Conference Stanford University
July 28-31, 1996, pages 32-37, Stanford University, CA, USA, 28-31 1996. Stanford
Bookstore.

. M. Hinchliffe. Dynamic Modelling Using Genetic Programming. PhD thesis, Uni-

versity of Newcastle upon Type, 2001.

Z. Jie, T. Changjie, L. Chuan, C. Anlong, and Y. Chang’an. Time series predic-
tion based on gene expression programming. International Conference for Web
Information (WAIMO04), Springer Verlag, 2004.

J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). The MIT Press, 1992.

L. S. Ljung. System Identification: Theory for the User. Prentice Hall, 1987.

S. Makridakis, S. C. Whellwright, and R. J. Hyndamn. Forecasting Methods and
Applications. John Wiley & Sons, Inc., 3 edition, 1992.

Minitab. http://www.minitab.com/.

. G. G. Szpiro. Forecasting chaotic time series with genetic algorithms. Physical

Review E., 1997.
T. Weinbrenner. Genetic programming techniques applied to measurement data.
Diploma Thesis, 1997.

